Skip to content

Examples

Real-world examples to learn from and inspire your scientific manuscripts.

🌟 Official Example Manuscript

The Rxiv-Maker Paper

The best way to learn Rxiv-Maker is to explore the official example: the manuscript describing Rxiv-Maker itself!

  • Quick Start


    Clone the example with one command

    rxiv get-rxiv-preprint
    cd manuscript-rxiv-maker/MANUSCRIPT
    rxiv pdf
    

    View on GitHub

  • Published Version


    See the final PDF output

    arXiv:2508.00836

What You'll Learn

The official example demonstrates:

Self-Updating Manuscripts

{{py:exec
import pandas as pd
df = pd.read_csv("DATA/arxiv_stats.csv")
total_submissions = len(df)
}}

arXiv has received {{py:get total_submissions}} submissions

Values update automatically when you rebuild the PDF!

Automated Visualizations

# FIGURES/Figure__arxiv_growth.py
import matplotlib.pyplot as plt
import pandas as pd

# Load real-time data
df = pd.read_csv("DATA/arxiv_monthly_submissions.csv")

# Create professional plot
plt.figure(figsize=(12, 6))
plt.plot(df['year_month'], df['submissions'])
plt.xlabel('Year')
plt.ylabel('Monthly Submissions')
plt.title('arXiv Submission Growth')
plt.tight_layout()
plt.show()

Production-Ready Techniques

  • Complex multi-panel figures
  • Supplementary information sections
  • LaTeX tables and mathematical notation
  • Cross-references for figures, equations, and tables
  • Comprehensive bibliography management
  • Data processing modules in src/py/

Basic Examples

Perfect for getting started:

Simple Article

# 00_CONFIG.yml
title: "My First Scientific Paper"
authors:
  - name: "Your Name"
    affiliation: "1"

affiliations:
  - id: "1"
    name: "Your Institution"
# 01_MAIN.md

## Abstract
This is a simple example demonstrating basic Rxiv-Maker features.

## Introduction
Scientific writing doesn't have to be complicated [@smith2023].

## Methods
We analyzed data using Python scripts (Figure @fig:results).

![Analysis results](FIGURES/simple_plot.py)
{#fig:results}

## Conclusion
Rxiv-Maker simplifies manuscript preparation.

## References

Static Figure Example

![System architecture diagram](FIGURES/architecture.png)
{#fig:architecture width="0.8\\linewidth"}

As shown in Figure @fig:architecture, the system has three components.

Intermediate Examples

Python Figure with Data

# FIGURES/experiment_results.py
import matplotlib.pyplot as plt
import pandas as pd

# Load experimental data
df = pd.read_csv("DATA/experiment.csv")

# Create publication-quality figure
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))

# Plot 1: Time series
ax1.plot(df['time'], df['signal'], 'b-', linewidth=2)
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Signal (a.u.)')
ax1.set_title('Time Series Analysis')
ax1.grid(True, alpha=0.3)

# Plot 2: Distribution
ax2.hist(df['signal'], bins=30, alpha=0.7, color='green', edgecolor='black')
ax2.set_xlabel('Signal Intensity')
ax2.set_ylabel('Frequency')
ax2.set_title('Signal Distribution')

plt.tight_layout()
plt.show()

R Figure with ggplot2

# FIGURES/statistical_analysis.R
library(ggplot2)
library(dplyr)

# Load and process data
data <- read.csv("DATA/experiment.csv") %>%
  mutate(group = as.factor(group))

# Create publication-quality plot
p <- ggplot(data, aes(x = treatment, y = response, fill = group)) +
  geom_boxplot(alpha = 0.7) +
  geom_jitter(width = 0.2, alpha = 0.5) +
  theme_minimal() +
  theme(
    text = element_text(size = 12),
    plot.title = element_text(hjust = 0.5, face = "bold")
  ) +
  labs(
    title = "Treatment Response by Group",
    x = "Treatment",
    y = "Response (ΞM)",
    fill = "Group"
  ) +
  scale_fill_brewer(palette = "Set2")

# Save high-resolution figure
ggsave("statistical_analysis.png", p,
       width = 10, height = 6, dpi = 300)

Advanced Examples

Multi-Panel Figure

![**Comprehensive Analysis.** **(A)** Time series showing signal evolution.
**(B)** Frequency distribution of signals. **(C)** Correlation matrix between
experimental variables. **(D)** Principal component analysis revealing distinct
clusters. All panels use data from the same experimental run (n=1000 measurements).](FIGURES/multi_panel_figure.py)
{#fig:comprehensive width="\\textwidth" tex_position="t"}

Dynamic Statistical Reporting

{{py:exec
import pandas as pd
import numpy as np
from scipy import stats

# Load experimental data
df = pd.read_csv("DATA/experiment.csv")

# Calculate statistics
control_mean = df[df['group']=='control']['value'].mean()
treatment_mean = df[df['group']=='treatment']['value'].mean()
t_stat, p_value = stats.ttest_ind(
    df[df['group']=='control']['value'],
    df[df['group']=='treatment']['value']
)
effect_size = (treatment_mean - control_mean) / df['value'].std()
}}

Our analysis of {{py:get len(df)}} samples revealed a significant difference
between control (M={{py:get control_mean:.2f}}) and treatment
(M={{py:get treatment_mean:.2f}}) groups (t={{py:get t_stat:.2f}},
p={{py:get p_value:.4f}}, Cohen's d={{py:get effect_size:.2f}}).

🎓 Learning Resources

From Simple to Advanced

  1. First Manuscript (5 minutes)
  2. Create your first PDF
  3. Understand basic structure
  4. Learn core commands

  5. User Guide (30 minutes)

  6. Master enhanced Markdown
  7. Work with figures and citations
  8. Optimize your workflow

  9. Advanced Features (1 hour)

  10. Python code execution
  11. LaTeX injection
  12. Reproducible workflows

  13. Official Example (Comprehensive)

  14. Production-ready manuscript
  15. Real arXiv submission
  16. All features demonstrated

ðŸ’Ą Example Use Cases

Computational Biology

## Results

We analyzed {{py:get num_cells}} single cells using our pipeline
(Figure @fig:pipeline). The analysis revealed {{py:get num_clusters}}
distinct cell populations with expression patterns shown in Figure @fig:heatmap.

![Analysis pipeline](FIGURES/pipeline_diagram.py)
{#fig:pipeline}

![Expression heatmap](FIGURES/expression_heatmap.py)
{#fig:heatmap}

Physics & Engineering

## Experimental Results

The resonance frequency was measured as {{py:get freq_resonance:.3f}} GHz
with Q-factor of {{py:get q_factor:.1f}} (Figure @fig:spectrum).

$$
Q = \frac{f_0}{\Delta f}
$$
{#eq:q_factor}

where $f_0$ is the resonance frequency and $\Delta f$ is the bandwidth.

Data Science & Machine Learning

## Model Performance

The trained model achieved {{py:get accuracy:.2%}} accuracy on the test set
(n={{py:get test_size}} samples). Confusion matrix and ROC curves are shown
in Figure @fig:performance.

![Model performance metrics](FIGURES/model_performance.py)
{#fig:performance width="\\textwidth"}

🔗 External Resources

Community Examples

Looking for more inspiration? Check these resources:

Templates

# Start from official template
git clone https://github.com/HenriquesLab/rxiv-maker-template.git my-paper
cd my-paper
rxiv pdf

Interactive Tutorials


ðŸĪ Share Your Example

Created something cool with Rxiv-Maker? Share it with the community!

  1. Open an issue in GitHub Discussions
  2. Tag your repository with rxiv-maker topic
  3. Submit a pull request to add your example to this page

🚀 Next Steps


Ready to create your own? Start with the First Manuscript Tutorial or explore the official example.