Examples¶
Real-world examples to learn from and inspire your scientific manuscripts.
ð Official Example Manuscript¶
The Rxiv-Maker Paper¶
The best way to learn Rxiv-Maker is to explore the official example: the manuscript describing Rxiv-Maker itself!
-
Quick Start
Clone the example with one command
-
Published Version
See the final PDF output
What You'll Learn¶
The official example demonstrates:
Self-Updating Manuscripts
{{py:exec
import pandas as pd
df = pd.read_csv("DATA/arxiv_stats.csv")
total_submissions = len(df)
}}
arXiv has received {{py:get total_submissions}} submissions
Values update automatically when you rebuild the PDF!
Automated Visualizations
# FIGURES/Figure__arxiv_growth.py
import matplotlib.pyplot as plt
import pandas as pd
# Load real-time data
df = pd.read_csv("DATA/arxiv_monthly_submissions.csv")
# Create professional plot
plt.figure(figsize=(12, 6))
plt.plot(df['year_month'], df['submissions'])
plt.xlabel('Year')
plt.ylabel('Monthly Submissions')
plt.title('arXiv Submission Growth')
plt.tight_layout()
plt.show()
Production-Ready Techniques
- Complex multi-panel figures
- Supplementary information sections
- LaTeX tables and mathematical notation
- Cross-references for figures, equations, and tables
- Comprehensive bibliography management
- Data processing modules in
src/py/
ð Example Gallery¶
Basic Examples¶
Perfect for getting started:
Simple Article¶
# 00_CONFIG.yml
title: "My First Scientific Paper"
authors:
- name: "Your Name"
affiliation: "1"
affiliations:
- id: "1"
name: "Your Institution"
# 01_MAIN.md
## Abstract
This is a simple example demonstrating basic Rxiv-Maker features.
## Introduction
Scientific writing doesn't have to be complicated [@smith2023].
## Methods
We analyzed data using Python scripts (Figure @fig:results).

{#fig:results}
## Conclusion
Rxiv-Maker simplifies manuscript preparation.
## References
Static Figure Example¶

{#fig:architecture width="0.8\\linewidth"}
As shown in Figure @fig:architecture, the system has three components.
Intermediate Examples¶
Python Figure with Data¶
# FIGURES/experiment_results.py
import matplotlib.pyplot as plt
import pandas as pd
# Load experimental data
df = pd.read_csv("DATA/experiment.csv")
# Create publication-quality figure
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
# Plot 1: Time series
ax1.plot(df['time'], df['signal'], 'b-', linewidth=2)
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Signal (a.u.)')
ax1.set_title('Time Series Analysis')
ax1.grid(True, alpha=0.3)
# Plot 2: Distribution
ax2.hist(df['signal'], bins=30, alpha=0.7, color='green', edgecolor='black')
ax2.set_xlabel('Signal Intensity')
ax2.set_ylabel('Frequency')
ax2.set_title('Signal Distribution')
plt.tight_layout()
plt.show()
R Figure with ggplot2¶
# FIGURES/statistical_analysis.R
library(ggplot2)
library(dplyr)
# Load and process data
data <- read.csv("DATA/experiment.csv") %>%
mutate(group = as.factor(group))
# Create publication-quality plot
p <- ggplot(data, aes(x = treatment, y = response, fill = group)) +
geom_boxplot(alpha = 0.7) +
geom_jitter(width = 0.2, alpha = 0.5) +
theme_minimal() +
theme(
text = element_text(size = 12),
plot.title = element_text(hjust = 0.5, face = "bold")
) +
labs(
title = "Treatment Response by Group",
x = "Treatment",
y = "Response (ΞM)",
fill = "Group"
) +
scale_fill_brewer(palette = "Set2")
# Save high-resolution figure
ggsave("statistical_analysis.png", p,
width = 10, height = 6, dpi = 300)
Advanced Examples¶
Multi-Panel Figure¶

{#fig:comprehensive width="\\textwidth" tex_position="t"}
Dynamic Statistical Reporting¶
{{py:exec
import pandas as pd
import numpy as np
from scipy import stats
# Load experimental data
df = pd.read_csv("DATA/experiment.csv")
# Calculate statistics
control_mean = df[df['group']=='control']['value'].mean()
treatment_mean = df[df['group']=='treatment']['value'].mean()
t_stat, p_value = stats.ttest_ind(
df[df['group']=='control']['value'],
df[df['group']=='treatment']['value']
)
effect_size = (treatment_mean - control_mean) / df['value'].std()
}}
Our analysis of {{py:get len(df)}} samples revealed a significant difference
between control (M={{py:get control_mean:.2f}}) and treatment
(M={{py:get treatment_mean:.2f}}) groups (t={{py:get t_stat:.2f}},
p={{py:get p_value:.4f}}, Cohen's d={{py:get effect_size:.2f}}).
ð Learning Resources¶
From Simple to Advanced¶
- First Manuscript (5 minutes)
- Create your first PDF
- Understand basic structure
-
Learn core commands
-
User Guide (30 minutes)
- Master enhanced Markdown
- Work with figures and citations
-
Optimize your workflow
-
Advanced Features (1 hour)
- Python code execution
- LaTeX injection
-
Reproducible workflows
-
Official Example (Comprehensive)
- Production-ready manuscript
- Real arXiv submission
- All features demonstrated
ðĄ Example Use Cases¶
Computational Biology¶
## Results
We analyzed {{py:get num_cells}} single cells using our pipeline
(Figure @fig:pipeline). The analysis revealed {{py:get num_clusters}}
distinct cell populations with expression patterns shown in Figure @fig:heatmap.

{#fig:pipeline}

{#fig:heatmap}
Physics & Engineering¶
## Experimental Results
The resonance frequency was measured as {{py:get freq_resonance:.3f}} GHz
with Q-factor of {{py:get q_factor:.1f}} (Figure @fig:spectrum).
$$
Q = \frac{f_0}{\Delta f}
$$
{#eq:q_factor}
where $f_0$ is the resonance frequency and $\Delta f$ is the bandwidth.
Data Science & Machine Learning¶
## Model Performance
The trained model achieved {{py:get accuracy:.2%}} accuracy on the test set
(n={{py:get test_size}} samples). Confusion matrix and ROC curves are shown
in Figure @fig:performance.

{#fig:performance width="\\textwidth"}
ð External Resources¶
Community Examples¶
Looking for more inspiration? Check these resources:
- GitHub Discussions - Community-shared examples
- GitHub Topics - Projects using Rxiv-Maker
- Template Repository - Starter template
Templates¶
# Start from official template
git clone https://github.com/HenriquesLab/rxiv-maker-template.git my-paper
cd my-paper
rxiv pdf
Interactive Tutorials¶
- Google Colab Notebook - Try without installing
- VS Code Extension - Enhanced editing with live preview
ðĪ Share Your Example¶
Created something cool with Rxiv-Maker? Share it with the community!
- Open an issue in GitHub Discussions
- Tag your repository with
rxiv-makertopic - Submit a pull request to add your example to this page
ð Next Steps¶
-
User Guide
Master all features
-
Advanced Features
Unlock advanced capabilities
-
Official Example
Clone the complete example
Ready to create your own? Start with the First Manuscript Tutorial or explore the official example.